AQA

A-LEVEL

Mathematics

Mark scheme
6360
June 2015

Pure Core 2 - MPC2

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
	$\begin{aligned} & \text { (Area of sector }=) \frac{1}{2} r^{2} \theta \\ & \begin{aligned} & \frac{1}{2}\left(5^{2}\right) \theta=15 \quad\left(\theta=\frac{15}{12.5}\right) \\ &\text { (Perimeter of sector }=) 5+5+5 \theta \\ &=10+5 \times \frac{6}{5}=16(\mathrm{~cm}) \end{aligned} \end{aligned}$	M1 A1 M1 A1	4	$\frac{1}{2} r^{2} \theta$ seen, or used, for the sector area A correct equation in θ or in $r \theta$ eg $2.5 r \theta=15$ $r+r+r \theta$ seen, or used, for the perimeter 16
	Total		4	

Q4	Solution	Mark	Total	Comment
(a)	$\frac{2}{x^{2}}=2 x^{-2}$	B1		PI by its derivative as $-4 x^{-3}$ or $4 x^{-3}$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-4 x^{-3}-\frac{1}{4}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	Differentiating one term correctly. ACF
(b)(i)	$\frac{2}{x^{2}}-\frac{x}{4}=0$	M1		
	$\left(x_{M}=\right) 2$	A1	2	NMS $2 / 2$ for correct answer.
(b)(ii) (b)(iii)	(At M) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{4}{8}-\frac{1}{4}<0$, so max.	E1	1	Using c's x_{M} and c's $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ to show $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is negative and stating conclusion ie max.
(b)(iii)	$\begin{aligned} & \int\left(\frac{2}{x^{2}}-\frac{x}{4}\right) \mathrm{d} x=-2 x^{-1}-\frac{x^{2}}{8}(+c) \\ & (y=)-2 x^{-1}-\frac{x^{2}}{8}(+c) \end{aligned}$	M1 A1		Attempt to integrate $\frac{d y}{d x}$ with at least one of the two terms integrated correctly. $-2 x^{-1}-\frac{x^{2}}{8}$ OE ; condone unsimplified
	When $x=2, y=2.5 \Rightarrow 2.5=-1-0.5+c$	M1		Subst. $x=c^{\prime}$'s (b), $y=2.5$ into $y=\mathrm{F}(x){ }^{+}{ }^{\prime} c^{\prime}$ in attempt to find constant of integration, where $\mathrm{F}(x)$ follows attempted integration of expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$y=-2 x^{-1}-\frac{x^{2}}{8}+4$	A1	4	ACF but with signs and coeffs simplified
	Total		10	

Q5	Solution	Mark	Total	Comment
(a)	$132=160 p+q$			Seen or used
	$20=20 p+q$	M1		Seen or used
	$112=140 p$	m1		Valid method to solve the correct two simultaneous eqns in p and q to at least the stage $112=140 p$ OE or $28=7 q$ OE PI by correct values for both p and q from two correct simultaneous equations
	$p=\frac{112}{140} \quad\left(=\frac{4}{5}\right)$	A1		ACF
	$q=4$	A1	5	$q=4$
(b)	$160=\frac{4}{5} u_{1}+4 \quad u_{1}=195$	B1F	1	Ft on $u_{1}=\frac{160-\mathrm{c}^{\prime} \mathrm{s} q}{\mathrm{c} \text { 's } p}$, provided u_{1} is exact and p and q are both positive.
			6	

Q6	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \sin ^{-1} 0.6=0.64(35 \ldots) \quad(=\beta) \\ & x+0.7=\beta, \quad x+0.7=\pi-\beta(=2.4(98 . .)) \end{aligned}$	B1		PI by one correct value for x to at least 2dp or 2sf $x+0.7=\beta$ and $x+0.7=\pi-\beta$ where β is the $\mathrm{c}^{\prime} \mathrm{s}$ value for $\sin ^{-1} 0.6$
	$x=-0.056,1.8$ (to 2 sf)	A1	3	Must be correct 2 sf values ie $-0.056,1.8$ Ignore any values outside given interval. SC NMS Condone >2 sf and mark as B1 B1 max. $\{-0.056(498 ..) ; 1.7(9809 .)$.
(b)(i)	$5 \cos ^{2} \theta-\cos \theta=1-\cos ^{2} \theta$	M1 A1		Replacing $\sin ^{2} \theta$ by $1-\cos ^{2} \theta$
	$(2 \cos \theta-1)(3 \cos \theta+1) \quad(=0)$	m1		$(2 \cos \theta \pm 1)(3 \cos \theta \pm 1)$ PI by the two 'correct' roots with correct/incorrect signs
	(Possible values of $\cos \theta=$) $\frac{1}{2},-\frac{1}{3}$	A1	4	The two correct values of $\cos \theta$.
(b)(ii)	When $\cos \theta=-\frac{1}{3}, \sin ^{2} \theta=\frac{8}{9}$	B1		
	$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{(\pm) \sqrt{\frac{8}{9}}}{-\frac{1}{3}}$	M1		$\tan \theta=\frac{\sin \theta}{\cos \theta} \underline{\text { used; could be used with }}$ either of c's values of $\cos \theta$ from (b)(i) and a corresponding value of $\sin \theta$
	So a (+'ve) value for $\tan \theta$ is $-\sqrt{\frac{8}{9}} \div\left(-\frac{1}{3}\right)=\sqrt{8}=2 \sqrt{2}$	A1	3	CSO A.G. Be convinced.
	Total		10	
(b)(ii) Alt	Eg NMS $x=-0.06,1.80$ scores B0B1			
	$\sec \theta=-3, \sec ^{2} \theta=9(\mathbf{B 1}) ; \tan ^{2} \theta=\sec ^{2} \theta$	$1=9$	1);	ve) value of $\tan \theta$ is $\sqrt{8}=2 \sqrt{2}$ (A1CSO)

Q8	Solution	Mark	Total	Comment
	Gradient of the line $3 y-2 x=1$ is $\frac{2}{3}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-0.5}$ At $A, \frac{1}{2} x^{-0.5}=\frac{2}{3}$ $A\left(\frac{9}{16}, \frac{3}{4}\right)$ Eqn of tang at $A: y-\frac{3}{4}=\frac{2}{3}\left(x-\frac{9}{16}\right)$	B1 B1 M1 A1 A1	5	(Gradient) $\frac{2}{3}$ seen or used. Condone 0.66, 0.67 or better for $\frac{2}{3}$. Correct differentiation of $x^{\frac{1}{2}}$ c's $\frac{\mathrm{d} y}{\mathrm{~d} x}$ expression $=$ c's numerical gradient of given line. Correct exact coordinates of A ACF eg $y=\frac{2}{3} x+\frac{3}{8}$ or eg $3 y-2 x=\frac{9}{8}$ must be exact
	Total		5	
Examples	Cand. writes $0.5 x^{-0.5}=k$, and stops, where $k=-\frac{2}{3}$ or 2 or -2 . Mark these types as (B0, B1, M1A0A0)			

